Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(5): 103598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38489885

RESUMO

Bacterial chondronecrosis with osteomyelitis (BCO) lameness is the most critical animal health and welfare issue facing the broiler industry worldwide. It is estimated that 1 to 2% of bird condemnation at marketing age is caused by BCO lameness, resulting in tens of millions of dollars in annual losses. Fast-growing broilers are prone to mechanical stress that triggers bacterial translocation across epithelial barriers into the bloodstream, followed by bacterial colonization in the growth plate of long bones, and eventually, bone necrosis and lameness. Mycotoxins (MTX) are secondary metabolites produced naturally by microfungi, of which deoxynivalenol (DON), fumonisin (FUM), and zearalenone are the most prevalent in corn and soybean-meal-based diets. The presence of these mycotoxins in feed has been proven to reduce the barrier strength of the intestinal tracts and trigger immunosuppressive effects. In this study, we investigated the effects of the DON and FUM-contaminated feeds on the incidence of BCO lameness in broilers reared in both wire- and litter-floors. 720 one-day-old broiler chicks were assigned to the 2 × 2 factorial design: 2 MTX diets containing DON and FUM on wire flooring (MTX-W) and litter flooring (MTX-L), and 2 diets without MTX contamination on control wire flooring (CW) and control litter flooring (CL). Throughout the trial, the cumulative incidence of lameness per treatment was assessed by necropsying the lame birds. Birds in the MTX-W group had a higher incidence of lameness compared to those in CW (73.3% vs. 62.0%) (P < 0.05), and birds in the MTX-L group had a higher incidence of lameness compared to birds in CL (54.0% vs. 34.0%) (P < 0.05). MTX elicited net increases in BCO to a greater degree on litter (+20%) than on wire flooring (+12%). The increased incidence of BCO lameness in the MTX-W coincided with increased intestinal permeability supporting a correlation between intestinal barrier integrity and BCO lameness. To conclude, DON and FUM are predisposing factors for increasing BCO. However, no significant interaction exists between the diet and floor types in inducing lameness in broilers.


Assuntos
Ração Animal , Galinhas , Dieta , Fumonisinas , Coxeadura Animal , Osteomielite , Doenças das Aves Domésticas , Tricotecenos , Animais , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/etiologia , Coxeadura Animal/etiologia , Osteomielite/veterinária , Osteomielite/microbiologia , Osteomielite/etiologia , Ração Animal/análise , Tricotecenos/toxicidade , Dieta/veterinária , Abrigo para Animais
2.
Poult Sci ; 102(10): 102887, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572620

RESUMO

The United States is the largest broiler producer in the world, and Americans consume about 45 kg of chicken per capita per year, which generates substantial economic and environmental footprints. We conduct techno-economic analysis and life cycle assessment (TEA/LCA) to evaluate the sustainability performance of the U.S. broiler industry and quantify the cost, greenhouse gas (GHG) emissions, energy, water, land, fertilizer, and respiratory impacts of 7 broiler production scenarios for a contract Grower, Integrator, and Combined control volume. The assessment is a farm-gate to farm-gate analysis that includes capital cost of chicken houses, labor, chicks brought into the farm, feeds, on-site fuels, and on-site emissions. We found that economics for the Integrator are profitable and dominated by the cost of corn and soybean meal feeds, payments to the Grower, and revenue from live broilers. Additionally, we found that economics for the Grower generate modest return on investment (ROI) largely based on the cost of houses and labor when compared to contract revenue from the Integrator. Environmental impacts for GHG, energy, and respiratory effects are primarily associated with upstream feed production (roughly 65%-80% of total impacts) and on-site fuel consumption (∼20%-35% of total impacts), while those for water, land, and eutrophication are almost entirely attributable to upstream feed production (litter spreading has a low economic allocation factor). Tradeoffs among sustainability metrics are further explored with a sensitivity analysis and by evaluating cost/environmental benefit scenarios.


Assuntos
Galinhas , Gases de Efeito Estufa , Humanos , Estados Unidos , Animais , Meio Ambiente , Fazendas , Zea mays , Água , Efeito Estufa
3.
Front Physiol ; 13: 934381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991182

RESUMO

Heat stress (HS) compromises the yield and quality of poultry products and endangers the sustainability of the poultry industry. Despite being homeothermic, chickens, especially fast-growing broiler lines, are particularly sensitive to HS due to the phylogenetic absence of sweat glands, along with the artificial selection-caused increase in metabolic rates and limited development of cardiovascular and respiratory systems. Clinical signs and consequences of HS are multifaceted and include alterations in behavior (e.g., lethargy, decreased feed intake, and panting), metabolism (e.g., catabolic state, fat accumulation, and reduced skeletal muscle accretion), general homeostasis (e.g., alkalosis, hormonal imbalance, immunodeficiency, inflammation, and oxidative stress), and gastrointestinal tract function (e.g., digestive and absorptive disorders, enteritis, paracellular barrier failure, and dysbiosis). Poultry scientists and companies have made great efforts to develop effective solutions to counteract the detrimental effects of HS on health and performance of chickens. Feeding and nutrition have been shown to play a key role in combating HS in chicken husbandry. Nutritional strategies that enhance protein and energy utilization as well as dietary interventions intended to restore intestinal eubiosis are of increasing interest because of the marked effects of HS on feed intake, nutrient metabolism, and gut health. Hence, the present review series, divided into Part I and Part II, seeks to synthesize information on the effects of HS on physiology, gut health, and performance of chickens, with emphasis on potential solutions adopted in broiler chicken nutrition to alleviate these effects. Part I provides introductory knowledge on HS physiology to make good use of the nutritional themes covered by Part II.

4.
Front Physiol ; 13: 943612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003648

RESUMO

With the growing global demand for animal protein and rising temperatures caused by climate change, heat stress (HS) is one of the main emerging environmental challenges for the poultry industry. Commercially-reared birds are particularly sensitive to hot temperatures, so adopting production systems that mitigate the adverse effects of HS on bird performance is essential and requires a holistic approach. Feeding and nutrition can play important roles in limiting the heat load on birds; therefore, this review aims to describe the effects of HS on feed intake (FI) and nutrient digestibility and to highlight feeding strategies and nutritional solutions to potentially mitigate some of the deleterious effects of HS on broiler chickens. The reduction of FI is one of the main behavioral changes induced by hot temperatures as birds attempt to limit heat production associated with the digestion, absorption, and metabolism of nutrients. Although the intensity and length of the heat period influences the type and magnitude of responses, reduced FI explains most of the performance degradation observed in HS broilers, while reduced nutrient digestibility appears to only explain a small proportion of impaired feed efficiency following HS. Targeted feeding strategies, including feed restriction and withdrawal, dual feeding, and wet feeding, have showed some promising results under hot temperatures, but these can be difficult to implement in intensive rearing systems. Concerning diet composition, feeding increased nutrient and energy diets can potentially compensate for decreased FI during HS. Indeed, high energy and high crude protein diets have both been shown to improve bird performance under HS conditions. Specifically, positive results may be obtained with increased added fat concentrations since lipids have a lower thermogenic effect compared to proteins and carbohydrates. Moreover, increased supplementation of some essential amino acids can help support increased amino acid requirements for maintenance functions caused by HS. Further research to better characterize and advance these nutritional strategies will help establish economically viable solutions to enhance productivity, health, welfare, and meat quality of broilers facing HS.

5.
Poult Sci ; 101(9): 102038, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35921733

RESUMO

Two experiments investigated broiler growth performance and processing characteristics when fed increasing Gly concentrations in reduced CP diets fed from 0 to 48 d. In experiment 1, birds were allocated to 1 of 4 dietary treatments: a control (CTL) diet containing feed-grade L-Met, L-Lys, and L-Thr, a reduced CP (RCP) diet with additions of feed-grade L-Val and L-Ile, or the RCP diet with moderate (M Gly) or high Gly (H Gly) inclusion levels to achieve a total Gly + Ser of 100 or 112%, respectively, of the CTL diet. Birds in experiment 2 were assigned to 1 of 6 dietary treatments: a CTL diet, a RCP diet, or a low CP (LCP) diet without or with added Gly to achieve 88, 100, 112, or 124% total Gly + Ser concentrations of the RCP diet. For experiment 1, 0 to 14 d broiler performance was similar (P > 0.05) among dietary treatments. From 0 to 48 d, broilers fed the H Gly diet had the lowest (P = 0.006) body weight gain (BWG) and highest (P = 0.003) feed conversion ratio (FCR). Feeding either the RCP or M Gly diet resulted in similar (P > 0.05) growth and processing characteristics to the CTL. For experiment 2, increasing Gly levels in the LCP diet linearly reduced (P ≤ 0.027) 0 to 14 d FI and FCR. From 0 to 48 d, broilers had similar (P > 0.05) performance when fed the CTL or RCP diet, but had a higher (P < 0.001) FCR when fed the LCP88 diet. Increasing Gly levels linearly reduced (P = 0.033) FCR. Total breast meat yield was negatively affected (P ≤ 0.020) when feeding the LCP88 diet and did not respond to Gly levels. In conclusion, effects of increasing total Gly + Ser levels on 0 to 48 d broiler performance are likely dependent on the content of dietary CP and other potentially interacting nutrients.


Assuntos
Galinhas , Fabaceae , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta com Restrição de Proteínas/veterinária , Suplementos Nutricionais , Glicina/metabolismo
6.
Front Vet Sci ; 9: 937102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847644

RESUMO

Outbreaks of histomonosis in turkeys are typically initiated by the ingestion of contaminated embryonated eggs of Heterakis gallinarum, potentially present in earthworms and mechanical vectors. Once an outbreak is started, infected turkeys can transmit the disease by horizontal transmission. Factors influencing horizontal transmission of histomonosis are poorly understood. Replication of horizontal transmission in experimental conditions has not been consistent, presenting an obstacle in searching for alternatives to prevent or treat the disease. Two pilot experiments and three validation experiments were conducted in the present study. In pilot experiment 1, one isolate of Histomonas meleagridis (named Buford) was used. Turkeys were fed a low-nutrient density diet corn-soy based (LOW-CS) and raised in floor pens. In pilot experiment 2, another isolate of H. meleagridis was used (named PHL). Turkeys were fed a low-nutrient density diet with the addition of wheat middlings (LOW-WM) and raised in floor pens. In experiment 3, conducted on floor pens, both isolates and diets were used in different groups. In experiment 4, turkeys were raised on battery cages and only the PHL isolate was used. Both diets (LOW-WM and LOW-CS) were used, in addition to a diet surpassing the nutritional needs of young poults (turkey starter, TS). In experiment 5, conducted in battery cages, only the PHL isolate was used, and the LOW-WM and TS diets were in different groups. The horizontal transmission was achieved only with the PHL isolate from all experiments. The transmission rate varied among experimental diets, with the TS diet having the lowest transmission rate in experiments 4 and 5. Variation was observed between experiments and within experimental groups.

7.
Poult Sci ; 101(3): 101674, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35124351

RESUMO

Poultry nutritionists continually strive for more "precision" nutritional programs that provide the exact balance of nutrients that maximize broiler growth performance without economically and environmentally costly excesses. Many factors affect the precise amount and balance of nutrients needed by the broiler, including genetics, age, sex, and environment. Furthermore, broilers in intensive rearing environments will almost always be subjected to some degree of enteric stress that can alter nutrient needs. Exposure to enteric pathogens such as Eimeria spp., the intestinal parasites that cause avian coccidiosis, induces physical damage to the intestinal epithelium and activates immune responses, ultimately resulting in the repartitioning of amino acids (AA) in response to these prioritized demands. Even without any pathogenic challenge, the intestine has an already high demand for many AA, with 30 to 100% of dietary AA extracted during first pass intestinal metabolism. In many cases, increasing dietary protein from intact proteins has been shown to be a viable option to ameliorate impaired AA digestion and absorption and heightened need for certain AA of birds under an enteric stress. However, increasing dietary protein often results in concomitant increases in indigestible protein and carbohydrates that can stimulate the overgrowth of pathogenic bacteria (i.e., Clostridium perfringens). Alternative options to increase dietary AA levels are to increase all feed-grade, free AA (e.g., Met, Lys, Thr, Val), or specific individual feed-grade AA. Therefore, the objectives of this paper are to discuss precision nutrition, the dietary AA demands of the intestine, consequences of coccidiosis on AA needs of the intestine, and formulation approaches to meet these altered needs. In summary, increased dietary protein met by intact proteins has consistently demonstrated its benefits during an Eimeria spp. infection; however, to further the goal of precision nutritional programs, feeding higher levels of a specific AA to support desired functions such as intestinal recovery or immune function for birds experiencing an enteric stress still require further evaluation.


Assuntos
Aminoácidos , Doenças das Aves Domésticas , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Galinhas , Suplementos Nutricionais , Intestinos , Doenças das Aves Domésticas/parasitologia
8.
Poult Sci ; 100(9): 101295, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34332224

RESUMO

The effects of hatch window and hatching basket nutrient availability on organ weights, performance, and processing yield of broilers were investigated. Eggs were hatched in illuminated hatchers. At the end of each hatch window period (HWP), hatched chicks were placed into control (CTL) hatching baskets with no nutrients or baskets providing access to feed and water (FAW). This resulted in 6 treatments in a factorial arrangement of 3 HWP (early, middle, or late) and 2 basket types (CTL or FAW). Chicks remained in experimental baskets until 504 h and were then subjected to a 4 h holding period at the hatchery without nutrient access. Subsequently, 1,500 hatched chicks were reared in floor pens for 42 d with 5 replicate pens per treatment. Common diets and water were provided ad libitum. Bird weights and feed consumption were recorded weekly. Individual bird weights were taken at 21 and 42 d. At 43 d, 14 males from each pen were processed. There was an interaction between HWP and basket type on placement BW (P = 0.028) and BW change in the hatcher (P < 0.001). The HWP influenced BW at hatch (P = 0.007), 7 d (P < 0.001), and 14 d (P < 0.001) and FI at 7 d (P < 0.001) and 14 d (P = 0.002). Chicks from FAW baskets were heavier (P < 0.001) than those from CTL baskets at 7 d; afterward, they were similar (P > 0.05) in BW. Yolk and liver weights were similar (P > 0.05) between basket treatments at 3 d posthatch. No differences (P > 0.05) in FCR, mortality, or processing were observed between basket treatments. Interestingly, early hatching chicks were lightest at hatch but subsequently had higher FI and BWG. These findings indicate that hatcher nutrient access may reduce weight loss in the hatcher, especially for early hatching chicks, but had no influence on subsequent performance or processing yields beyond 7 d.


Assuntos
Galinhas , Óvulo , Animais , Dieta/veterinária , Masculino , Nutrientes , Tamanho do Órgão
9.
Animals (Basel) ; 11(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922862

RESUMO

The objective of this experiment was to investigate the effects of feed and water availability in hatching baskets on broiler performance, processing yield, and organ weights while considering the influence of hatch window. Cobb 500 eggs were transferred into illuminated hatchers with two hatching basket types [control (CTL) hatching baskets with no nutrients provided or baskets containing feed and water (FAW)]. Chicks were pulled sequentially to establish four hatch window periods (HWP): early, pre-peak, post-peak, or late. Chicks were then held for 4 h at the hatchery without nutrient access and subsequently reared in 26 floor pens designated as CTL (n = 13) or FAW (n = 13), with 13 chicks from each of the 4 HWP per pen (52 chicks per pen). At 43 d, 16 males from each pen were processed. Chicks from FAW baskets were 1 g heavier (p < 0.001) than those from CTL baskets at placement and were heavier through 28 d (p = 0.003) but similar (p > 0.05) in body weight (BW) for the remainder of the 42 d. No differences (p > 0.05) in feed conversion ratio, mortality, or processing data were observed between CTL and FAW groups. Early-hatching chicks were lighter (p < 0.001) than those from all other HWP at placement, but were only lighter (p < 0.001) than the post-peak group by 42 d. In summary, it was found that hatching basket nutrient access increased the BW of broilers during the first 4 wk of growth, with no other effects on performance or yield. Also, earlier-hatching chicks were generally able to compensate for a lighter placement BW.

10.
Poult Sci ; 99(12): 6593-6605, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248575

RESUMO

The inflammatory response involves a complex interplay of local tissue activities designed to recruit leukocytes and proteins from the blood to the infected tissue. For egg-type chickens, we established the growing feather (GF) as an accessible tissue test site to monitor tissue responses to injected test-material. For commercial broilers, whose health depends to a large extent on innate immune system functions, the GF test system offers an important novel window to directly assess their natural defenses. This study was conducted to adapt the GF test system for use in broilers, and use it to simultaneously examine local (GF) and systemic (blood) inflammatory responses initiated by GF pulp injection of lipopolysaccharide (LPS). Specifically, GF of 12 male and 12 female, 5-week-old broilers were injected with LPS (16 GF/chicken; 1 µg LPS/GF). Blood and GF were collected at 0 (before), 6, and 24 h after GF injection. GF pulp was used to determine leukocyte-infiltration and gene-expression profiles, reactive-oxygen-species generation, and superoxide dismutase (SOD) activity. Blood was used to determine blood cell profiles and SOD activity. A time effect (P ≤ 0.05) was observed for most aspects examined. In GF, LPS injection resulted in heterophil and monocyte infiltration reaching maximal levels at 6 and 24 h, respectively. Reactive-oxygen-species generation, SOD activity, and mRNA levels of IL-1ß, IL-8, IL-6, IL-10, and cathelicidin B1 were elevated, whereas those of TNF-α, LITAF, SOD1, and SOD2 decreased after LPS injection. In blood, levels of heterophils and monocytes were elevated at 6 h, lymphocytes and RBC decreased at 6 h, and thrombocytes and SOD activity increased at 24 h. Assessment of LPS-induced activities at the site of inflammation (GF) provided novel and more relevant insights into temporal, qualitative, and quantitative aspects of inflammatory responses than blood. Knowledge generated from this dual-window approach may find direct application in identification of individuals with robust, balanced innate defenses and provide a platform for studying the effects of exogenous treatments (e.g., nutrients, probiotics, immunomodulators, etc.) on inflammatory responses taking place in a complex tissue.


Assuntos
Galinhas , Plumas , Regulação da Expressão Gênica , Inflamação , Lipopolissacarídeos , Monócitos , Animais , Galinhas/imunologia , Citocinas/genética , Plumas/efeitos dos fármacos , Plumas/imunologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Inflamação/induzido quimicamente , Contagem de Leucócitos/veterinária , Lipopolissacarídeos/farmacologia , Masculino , Monócitos/efeitos dos fármacos , Superóxido Dismutase/sangue
11.
Front Physiol ; 10: 1251, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632293

RESUMO

The incidence of woody breast (WB) is increasing on a global scale representing a significant welfare problem and economic burden to the poultry industry and for which there is no effective treatment due to its unknown etiology. In this study, using diffuse reflectance spectroscopy (DRS) coupled with iSTAT portable clinical analyzer, we provide evidence that the circulatory- and breast muscle-oxygen homeostasis is dysregulated [low oxygen and hemoglobin (HB) levels] in chickens with WB myopathy compared to healthy counterparts. Molecular analysis showed that blood HB subunit Mu (HBM), Zeta (HBZ), and hephaestin (HEPH) expression were significantly down regulated; however, the expression of the subunit rho of HB beta (HBBR) was upregulated in chicken with WB compared to healthy counterparts. The breast muscle HBBR, HBE, HBZ, and hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) mRNA abundances were significantly down regulated in WB-affected compared to normal birds. The expression of HIF-1α at mRNA and protein levels was significantly induced in breasts of WB-affected compared to unaffected birds confirming a local hypoxic status. The phosphorylated levels of the upstream mediators AKT at Ser473 site, mTOR at Ser2481 site, and PI3K P85 at Tyr458 site, as well as their mRNA levels were significantly increased in breasts of WB-affected birds. In attempt to identify a nutritional strategy to reduce WB incidence, male broiler chicks (Cobb 500, n = 576) were randomly distributed into 48 floor pens and subjected to six treatments (12 birds/pen; 8 pens/treatment): a nutrient adequate control group (PC), the PC supplemented with 0.3% myo-inositol (PC + MI), a negative control (NC) deficient in available P and Ca by 0.15 and 0.16%, respectively, the NC fed with quantum blue (QB) at 500 (NC + 500 FTU), 1,000 (NC + 1,000 FTU), or 2,000 FTU/kg of feed (NC + 2,000 FTU). Although QB-enriched diets did not affect growth performances (FCR and FE), it did reduce the severity of WB by 5% compared to the PC diet. This effect is mediated by reversing the expression profile of oxygen homeostasis-related genes; i.e., significant down regulation of HBBR and upregulation of HBM, HBZ, and HEPH in blood, as well as a significant upregulation of HBA1, HBBR, HBE, HBZ, and PHD2 in breast muscle compared to the positive control.

12.
Front Vet Sci ; 6: 468, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993443

RESUMO

An experiment was conducted to quantify the timing and magnitude of the effects of coccidiosis vaccination on the growth performance, apparent ileal digestibility (AID) of nutrients and energy, intestinal morphology, and plasma carotenoids and nitric oxide in broilers. Treatment groups consisted of 3 coccidiosis control methods [unvaccinated, unmedicated (NC), in-feed chemical coccidiostat (PC), and live oocyst vaccination (VAC) at day of hatch] administered to male Cobb broilers reared in floor pens. Body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) were determined at 12, 16, 20, 28, and 36 d. Blood and ileal digesta were collected from birds in 10 replicate pens of each treatment at 12, 16, 20, and 36 d to evaluate plasma carotenoid and nitric oxide concentrations and determine nutrient AID and IDE. Jejunal samples were taken at 12, 20, and 36 d for morphological measurements. Oocyst shedding in VAC birds was confirmed by increased oocyst counts and decreased carotenoid concentrations (P < 0.05) when compared with PC birds, with no differences (P > 0.05) in nitric oxide concentrations. At 20 d, BWG and FI were lowest (P < 0.05) in VAC birds, intermediate in NC birds, and highest in PC birds, with no differences in FCR (P > 0.05). By 28 and 36 d, FCR was higher (P < 0.05) for VAC and NC birds but BWG and FI of VAC birds were similar (P > 0.05) to PC birds. At d 12, IDE and AID of nitrogen and ether extract were lower (P < 0.05) in VAC birds than PC birds. At d 16, AID of nitrogen was similar (P > 0.05) between PC and VAC birds, whereas AID of ether extract remained lower in VAC birds than PC birds. No differences in AID of nutrients or IDE were observed (P > 0.05) between VAC and PC birds at 20 or 36 d. No differences (P > 0.05) in jejunal morphology were observed at any time point. Overall, VAC elicited a transient reduction in AID and IDE, particularly for lipids, that diminished by d 20.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...